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https://github.com/Telefonica/ATTPwn
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Intro: Cybersecurity and AI
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Tools:
• FGSM
• Scaling
• NLP
• DoS
• Reversing
• …



DEMO Google API

Original image FGSM (Fast Gradient Sign Method)
attack

Can you spot the differences?

6https://cloud.google.com/vision/docs/drag-and-drop
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Adversarial Attacks

• Tricking a machine learning model (wrong prediction)

• MLaaS and free Models (HuggingFace)

• Big companies have started to invest in AI security
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https://huggingface.co/



Adversarial Attacks

Training stage
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Adversarial Attacks

Operational pipeline

Input data Preprocessing Model
Prediction Action

Traffic sign
detection

Image file Class Probability
(STOP 98%) Stopping the car
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Adversarial Attacks

White Box Black Box Gray Box

Access to:
• Dataset
• Parameters
• Hyperparameters

Access to:
• Inputs
• Outputs

Access to:
• Both

Attacks based on attacker´s knowledge
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Adversarial Attacks

Attacks based on actions and targets

Poisoning
Malicious
Training
Data

Poisoned

Training stage
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Adversarial Attacks

Attacks based on actions and targets

Evasion

Image sample
manipulation

?
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Adversarial Attacks

Attacks based on actions and targets

Exploratory Reverse engineering
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Adversarial Attacks
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Adversarial Attacks

Targets 
and 
techniques

1. Misclassification

2. Targeted Misclassification

3. Source/Target Misclassification

4. Retrieve Model info

5. Backdoors

6. DoS
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Adversarial Attacks

• Training stage attacks:
• Data injection

• Data modification

• Corruption (logic)

• Operation pipeline attacks:
• Force model to produce wrong outputs 

and retrieve model info
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OMLASP

Why OMLASP?

• Machine Learning algorithms are part of the daily lives of millions of people

• Software that use Machine Learning models or algorithms usually only traditional vulnerabilities are 
checked from audits

• OMLASP intented to become a standard to help you to build your own auditing tools for Machine 
Learning models or algorithms

• There is a lot of information on the Internet about these attacks but it is fragmented, usually
educational or directly in papers. We want to bring these attack techniques to the cybersecurity
world that is not an expert in Machine Learning.
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OMLASP (inspired by MITRE)

https://attack.mitre.org/matrices/enterprise/ 19



OMLASP (inspired by MITRE)

OMLASP Matrix (work in progess)

Missclassification Targeted
Missclassification

Source/Target 
Missclassification

Retrieve Model
Information

Backdoors DoS

FGSM 
Missclassification
attack

FGSM attack to modify the
model input to force a 
specific targeted class

FGSM attack to force the
output for a specific input

Reversing the weights
of a model (neural 
networks) (black box)

NLP trigger to
bypass SPAM 
detectors

Poisoning new input 
dataset with data to
trigger an overflow or
underflow (to obtein
NaN values)

Scaling attack to get a 
targeted class in the model
output (black box)

Retrieve parameteres
from logistic and lineal 
regressions (black box)

Poisoning new input 
dataset with modified
and corrupted images to
trigger an overflow or
undeflow to interrupt
the service

Reescaling attack to
retrieve input size and 
interpolation algorithm

Decision Trees
reversing (black box)
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OMLASP

• Python library and tool to simplify and help to build auditing tools aiming:
• FGSM

• Scaling

• NLP

• DoS

• Reversing

• …

21



FGSM attacks

• Access to the model is mandatory, so it
is a White Box attack.

• Affected Models:
• Linear Models
• Non-linear models
• Neural Networks *

• Usually applied to images or computer
vision applications.

• FGSM attacks maximize the loss of a 
specific model.

FGSM example
(tweaking neural networks to generate modified images) 
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FGSM attacks
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X’X 𝜀

S



DEMO FGSM attacks
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DEMO FGSM attacks
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FGSM defense

• Retrain the algorithm with the following cost function:

• Increase deep of the neural network (layers)

• Regularization parameters of the network
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Scaling attacks

• Modify the input image of the neural network

• Image scaling is a widely used procedure in Computer Vision
and a very common preprocessing algorithm in Machine 
Learning, since most of them only accept input of a certain size

• The attacker must know the target size of the image and the
scaling algorithm that is used in the preprocessing stage (White 
Box, Gray Box and Black Box attack)

• When a scaling operation is performed on the image, a totally
diferent image is obtained
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scale

embed

S (Source Image)
T (Target Image)

A (Attack Image)

D (Result Image)

A ~ S

scaling(A) ~ T



DEMO Scaling attacks
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DEMO Scaling attacks
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DEMO Scaling black box

Falta vídeo scaling blackbox
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Scaling attacks: defense

• Scaling operations on images use sampling, but most of them also apply a series of
filters or convolutions (CNN) to reduce the frequency of the signal and reduce the efect of
aliasing.

• Kernel width (β) and Scale ratio (𝞂). For a scaling attack, β must be large and 𝞂 small
(you can only tweak 𝞂)

• Use small images as possible (less pixels to be attacked)

• Tensorflow, OpenCV or Pillow are libraries vulnerable to scaling attacks
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NLP attack

“ ... Best shopping site”

“ ... Best apple and mushrooms store
shopping site”

apple and mushrooms
store (triggers)

No SPAM

SPAMML NLP 
Base Model

ML NLP 
Base Model exploited
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DEMO NLP attack
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NLP defense

• Few works (tools) are done focused on defense techiques side

• Preserve the syntactic and semantic structure of the original text

• Probalistic Model (understand the phrases)
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Targeting the real world

Factory 
Assembly Line

Security Cameras Autonomous Vehicles
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Targeting the real world

Anti-Spam 
Models

Language
Translation

Models

Medical 
diagnosis and 

image procesing
models
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OMLASP repository and tools
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https://github.com/Telefonica/OMLASP



OMLASP repository and tools
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Recap

• It is essential to include the security of Artificial Intelligence models and 
architectures in pentesting.

• The only way to do this is to create operational applications that perform this type of
pentesting tasks in a simple and explanatory way.

• Following Mitre's and OWASP's steps is the way

• OMLASP is an open project still under construction that tries to unify the previous
topics.
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