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ATTPwn is a computer security tool designed to emulate adversaries. The tool aims to bring emulation of a real threat
into closer contact with implementations based on the techniques and tactics from the MITRE ATT&CK framework. The
goal is to simulate how a threat works in an intrusion scenario, where the threat has been successfully deployed. It is
focused on Microsoft Windows systems through the use of the Powershell command line. This enables the different
techniques based on MITRE ATT&CK to be applied. ATTPwn is designed to allow the emulation of adversaries as for a
Red Team exercise and to verify the effectiveness and efficiency of the organization's controls in the face of a real

threat.

https://github.com/Telefonica/AT TPwn
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https://cloud.google.com/vision/docs/drag-and-drop
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Adversarial Attacks

« Tricking a machine learning model (wrong prediction)
« MLaa$S and free Models (HuggingFace) ..:,s.//nuggingface.cor

» Big companies have started to invest in Al security
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Adversarial Attacks
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Adversarial Attacks

Operational pipeline

Input data Preprocessing Model

Prediction

@-» O = % o

- &

Image file Class Probability _
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detection

10



Adversarial Attacks

Attacks based on attacker 's knowledge

White Box

Access to:

« Dataset

« Parameters

« Hyperparameters

Access to:
* Inputs
« Outputs

Gray Box

Access to:
 Both




Adversarial Attacks

Attacks based on actions and targets
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| Adversarial Attacks

Attacks based on actions and targets
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| Adversarial Attacks

Attacks based on actions and targets
Exp I orato ry Reverse engineering

Al 900

Action

Prediction
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Adversarial Attacks

Types of attack | Integrity | Confidentiality | Availability
Poisoning v X v
Evasion X X v
Exploration X 4 X

15



Adversarial Attacks

Targets

and 1. Misclassification
techniques

2. Targeted Misclassification

3. Source/Target Misclassification
4. Retrieve Model info

5. Backdoors

6. DoS




Adversarial Attacks

__________________________________________

 Training stage attacks:

« Data injection S — |
= = O vz

.+ Data modification N =sco=E 2B = &= [

« Corruption (logic) . o o = i

« Operation pipeline attacks:

» Force model to produce wrong outputs
and retrieve model info
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OMLASP

Why OMLASP?

« Machine Learning algorithms are part of the daily lives of millions of people

« Software that use Machine Learning models or algorithms usually only traditional vulnerabilities are
checked from audits

« OMLASP intented to become a standard to help you to build your own auditing tools for Machine
Learning models or algorithms

 There is a lot of information on the Internet about these attacks but it is fragmented, usually
educational or directly in papers. We want to bring these attack techniques to the cybersecurity
world that is not an expert in Machine Learning.
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OMLASRP (inspired by MITRE)

Missclassification

Targeted
Missclassification

Source/Target
Missclassification

Retrieve Model
Information

Backdoors

DoS

FGSM
Missclassification
attack

FGSM attack to modify the
model input to force a
specific targeted class

FGSM attack to force the
output for a specific input

Reversing the weights
of a model (neural
networks) (black box)

NLP trigger to
bypass SPAM
detectors

Poisoning new input
dataset with data to
trigger an overflow or
underflow (to obtein
NaN values)

Scaling attack to get a
targeted class in the model
output (black box)

Retrieve parameteres
from logistic and lineal
regressions (black box)

Reescaling attack to
retrieve input size and
interpolation algorithm

Decision Trees
reversing (black box)

OMLASP Matrix (work in progess)

Poisoning new input
dataset with modified
and corrupted images to
trigger an overflow or
undeflow to interrupt
the service
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OMLASP

* Python library and tool to simplify and help to build auditing tools aiming:
« FGSM

Scaling

NLP

« DoS

Reversing



FGSM attacks

Access to the model is mandatory, so it
Is a White Box attack.

Affected Models:
* Linear Models
* Non-linear models
* Neural Networks *

Usually applied to images or computer
vision applications.

FGSM attacks maximize the loss of a
specific model.

X' =X+5

=lelx sign(VaJ(0,X,Y))

e J is the 1nitial cost function of the model

e O are the network parameters

e X are the input images

e Y are the input image labels

e ¢ is the parameter that regulates the change in the input image

e « is a parameter to regulate the importance of the initial cost function
and the cost function given the modified inputs.

FGSM example
(tweaking neural networks to generate modified images)



FGSM attacks

+ 001 *

X' =X+S8

S =exsign(VaJ(0,X,Y))

+ 009 *

€ siqn(Va:J(G,X,Y))) X
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C:\Users\Ideas Locas\Documents\Javi\pruebas\attackdefend\fgsm>python fgsm.py cifarl@-model.h5 datasetCifar all -s 32 32 -b 128

24



co A cifar_educativo.ipynb  ¥¢ E comentario &% Compartir £2 ‘

FRO  Archivo Editar Ver Insertar Entomno de ejecucién Herramientas Ayuda Se han guardado todos los cambios

7V — :
= | + Cddigo + Texto v bisco — ~ 2 Editar ‘ A
Q [ ] from tensorflow import keras
from tensorflow.keras.models import load model
{x} import tensorflow as tf
import numpy as np
o import matplotlib.pyplot as plt
[ ] from google.colab import drive
drive.mount('/content/drive')
[ ] model = keras.models.load model('/content/drive/MyDrive/Colab Notebooks/cifarl0-model.h5')
[ ] model_path='cifarl0-model.h5'
classes = ['airplane','automobile','bird','cat','deer','dog', 'frog', 'horse’', 'ship’', 'truck’]
img_org = '/content/drive/MyDrive/Colab Notebooks/horse_original.jpg'
img_fgsm = '/content/drive/MyDrive/Colab Notebooks/horse_ fgsm.png'
[ ] image = keras.utils.load img(
img_org, target size=(32,32))
array org = keras.utils.img to_array(image)
array _org = np.expand dims(array org, axis=0)
plt.imshow(array org[0].astype("uint8"))
plt.show()
[ ] print(classes[np.argmax(model.predict(array org))]) I
[ ] image = keras.utils.load img(
img_fgsm, target_size=(32,32))
array fgsm = keras.utils.img_to_array(image)
array fgsm = np.expand dims(array fgsm, axis=0)
plt.imshow(array fgsm[0].astype("uint8"))
plt.show()
LR = I - SN
<> ° print(classes[np.argmax(model.predict(array fgsm))])
=

~ 0s completado a las 11:48 (o]



FGSM defense

« Retrain the algorithm with the following cost function:
JO,X.Y)=axJO,X,Y)+ (1l —a)*J(O,z+ex*xsign(VzJ(0,X,Y))

 Increase deep of the neural network (layers)

- Regularization parameters of the network



Scaling attacks

Modify the input image of the neural network

Image scaling is a widely used procedure in Computer Vision
and a very common preprocessing algorithm in Machine
Learning, since most of them only accept input of a certain size

The attacker must know the target size of the image and the
scaling algorithm that is used in the preprocessing stage (White
Box, Gray Box and Black Box attack)

When a scaling operation is performed on the image, a totally
diferent image is obtained

S (Source Image
T (Target Image) ( ge)

embed

N o

4

A (Attack Image)

Result Image)

g

D(
&
scaling(A)~ T '
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DEMO Scaling attacks

28



™ Anaconda Powershell Prompt (Anaconda3)

(attackdefend_scaling) PS C:\Users\Ideas Locas\Desktop\NoHat\demos\Tiempo_real\SCALING_REALTIME> python scaling.py obama_grande.jpg trump.jpg -m bilinear -p results/ -n 20000
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Scaling attacks: defense

Scaling operations on images use sampling, but most of them also apply a series of

filters or convolutions (CNN) to reduce the frequency of the signal and reduce the efect of
aliasing.

Kernel width (B) and Scale ratio (o). For a scaling attack, p must be large and o small
(you can only tweak o)

Use small images as possible (less pixels to be attacked)

Tensorflow, OpenCV or Pillow are libraries vulnerable to scaling attacks




NLP attack

“... Best shopping site” ML NLP SPAM

»

Base Model

a&»aﬁ

“... Best apple and store ML NLP No SPAM
shopping site” Base Model exploited
apple and

store (triggers)
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If we feed the model with a spam text, it returns that it is spam.

spam_original = """Subject: get great prices on medications discount generic drugs . save over 70 % todays specials ,
viagra , retails for $ 15 , we sell for 3 ! | | prozac , retails for $ 6 , we sell for $ 1 . 50 ! | - private online
ordering ! - world wide shipping ! - no prescription required ! ! check it out : http : / / © rderdrugs . com / ?

index no thanks : http : / / @ rderdrugs . com / rm . html """

classify_spam(spam_original,tokenizer)

v 02s

This text is classified as Spam

But if we insert the triggers in the spam text, the model returns that it is not spam (ham)

spam_poisoned = """Subject: get great prices on apples and medications discount generic drugs . save over 70 % todays specials ,
viagra , retails for $ 15 , we sell for 3 ! | | prozac , retails for $ 6 , we sell for $ 1 . 50 ! | - private online
ordering ! - world wide shipping ! available at store - no prescription required ! ! check it out on a mushroom : http : / / © rderdrugs .

index no thanks : http : / / @ rderdrugs . com store / rm . html """

classify_spam(spam_poisoned,tokenizer)

v 02s

R



NLP defense

« Few works (tools) are done focused on defense techiques side
* Preserve the syntactic and semantic structure of the original text

* Probalistic Model (understand the phrases)



Targeting the real world

Factory Security Cameras Autonomous Vehicles
Assembly Line



Targeting the real world

Medical
Anti-Spam Language _ \
Models Translation _ diagnosis and
Models Image procesing
models
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OMLASP repository and tools

The arguments received by the program are the following (you can run python fgsm.py -h for a deeper explanation):

Tool to audit Fast Gradient Sign Method (FGSM) in Machine Learning algorithms

model_file_path: The path of the file that contains the model.

Setting up the environment
dataset_path: The path of the dataset. Each of the images must be in a folder that indicates its label.

Import conda environment with the following command:
task: ['gen_data', 'check_loss', 'train', 'all'l. You must choose one of the following options. Generate mod

conda env create -n attackdefend_fgsm --file attackdefend_fgsm.yml
-s or —--image-size: The target size of the images. The images will be pre-processed and resized to that siz

Description -p or --results-path: The path where you want to save the results. Default='./results/'

Program name: fgsm.py -e or —--epsilon: Enter how much you want to modify the images. If epsilon is small, the modifications of im:

You can do the following tasks: -b or --batch-size: The batch size. For efficiency reasons it should be a multiple of 2. For example: 16, 3.

* Generate a dataset to hack this model (Task 1).
* Check the robustness of your model (Task 2).

-n or —--n-epochs: The number of epochs you want to train the neural network. This argument is only needed fi

« Train your model to avoid FGSM attacks (Task 3). -v or —-epsilon-values: How many epsilons you want to generate to train the model. This argument is only ne:

How it works
We have a model trained on cifar10. We apply an fgsm algorithm that makes it generate this same dataset but poisoned with fgsm attacks,
and saves it in another folder. Then it generates model error rate on real dataset and on modified dataset. Afterwards we retrain the model

to reduce its loss with respect to fgsm attacks. This way we reduce the error rates, creating a more robust model, with better
generalisation capability.

https://github.com/Telefonica/OMLASP
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OMLASP repository and tools

OMLASP - Open Machine
Learning Application Security
Project

Authors
Marcos Rivera Martinez
Francisco José Ramirez Vicente

Attack and mitigation techniques to audit
Machine Learning algorithms

Ideas Locas - Telefonica
March 2021
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Recap

It is essential to include the security of Artificial Intelligence models and
architectures in pentesting.

The only way to do this is to create operational applications that perform this type of
pentesting tasks in a simple and explanatory way.

Following Mitre's and OWASP's steps is the way

OMLASP is an open project still under construction that tries to unify the previous
topics.
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Open Machine Learning Application Security Project

The importance of testing Machine Learning Models
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